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ABSTRACT. The rank transformation approach to
analysis of variance as a solution to the
Behrens-Fisher problem is examined. Using
simulation methodology four parameters were
manipulated for the two group design: (1)
ratio of population variances; (2) distri-
bution form; (3) sample size and (4) popula-
tion mean differance. The results indicated
that while the rank transform approach was
less sensitive to variance inequality than the
parametric ANOVA F-ratio, wunacceptably high
Type I error rates were obtained when cell
frequencies and group variances were inversely
related. With equal cell frequencies and/or
when cell frequencies were directly related to
group variances, appropriate Type I error
Tates were obtained. Under these conditions
however, the Brown-Forsythe procedure  for
comparing, group means provided greater powver
except when the sampled distribution was
leptokurtic.
Both empirical and analytic studies have repeatedly
shown that  paramet.ic analysis procedures for

N comparing group means are extremely sensitive to
) population veriance inequality when sample sizes are
E; markedly unequal. When sample size and group variance
Q
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Olejnik and Algina

are positively correlated, the nomiral significance
level is underestimated while with a negative
relationship between sample size and group varianc.,
the nominal significance level is overestimated
(Glass, Peckham and Sanders, 1972). Even with equal
sample sizes, Ramsey (1980) has shown that the actual
probability of a Type I error for the t-test may
either over or underestimate the nominal significance
level. Developing alternative data analysis
strategies when population variances differ, aiso
known as the Behrens-Fisher problem, has therefore
been an area of considerable interest, and several
solutions to the problem have been suggested. The
procedure offerd by Welch (1947, 1951), in
particular, has gained considerable attention.
Welch's solution modifies the  ANOVA F-ratio by
weighting the sample means by the ratio of the group
frequency to the group variance. 1In addition the
degrees of freedom error are adjusted so that the
computed statistic approximates the F distribution.
Wang (1971) has shown that this approximation is
satisfactory for most situations. James (1951)
suggested a similar weighting procedure but used the
chi-square distribution as the reference distribution.

Reecently Brown and Forsythe (1974a) have suggested a
slightly different approach to cthe Behrens-Fisher
problem. Their statistic takes the ratio of the sums
of squares between groups to a weighted sum of group
variances. The test statistic has an approximated F
distribution. For the two group case, the Welch and
the Brown-Forsythe procedures are  identiecal
(Brown-Forsythe, 1974a), but differ when multiple
groups are compared. Both procedures have been
generalized for factorial designs (Brown and Forsythe,
1974b; Johansen," 1980; Algina and Olejnik. 1984).

A number of investigations have studied both of
these strategies and compared them with respect to
their Type I error rates and statistical pover. The
results of these studles have shown that both
approaches are insensitive to variance inequality when
the sampled distributions were normal (Kohr and Games,

1974; Brown and Forsythe, 1974a; Levy, 1978; Dijkstra

and Werter, 1981; Lee and Fung, 1983). Under
non-normal parent distributions the Brown-Forsythe
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Rank Transform ANOVA

statistic was shown to provide appropriate Type I
error rates (Clinch and Keselman, 1982; Lee and Fung,
1983). The results with Welch's approach however have
been mixed and inconsistent. There is some evidence
to indicate that the approach is 1liberal for skewed
distributions when the number of levels of the
grouping factor is four or more (Clinch and Keselman,
1982; Levy, 1978). Levy on the other hand found
appropriate Type I error rates when there were three
levels of the independent variable and the sampled
population had a chi-square distribution. When data
were sampled from heavy-tailed distributions, some
results have indicated that Welch's procedure provides
a conservative test of group means (Yuen, 1974; Lee
and Fung, 1983). Other evidence however indicates
appropriate Type I error rates (Clinch and Keselman,
1982). Differences in these conclusions may be a
function of the degree to which the sampled
populations departed from normality. Finally for
light-tailed distributions, the Welch procedure has
been shown to provide a 1liberal test of means (Levy,
19785, but other results indicate that appropriate
Type I error rates are possible (Yuen, 1974).

When the procedures were compared in terms of tneir
statistical power, the results have been mixed but
generally consistent. Both  procedures provide
comparable power when the population distributions are
normal and the variances are -equal. Under this
condition both procedures are only slightly less
powerful than the ANOVA F-ratio (Brown and Forsythe,
1974a; Dijkstra and Werter, 1981; Clinch and Keselman,
1982; Lee and Fung, 1983). With unequal variances and
a normal parent distribution, the Brown-Forsythe
approach provided greater power when the extreme mean
had lower variance, while the Welch procedure was more
sensitive 1f the extreme mean had the large variance
(Brown and Forsythe, 1974a; Dijkstra and Werter, 1981;
Lee and Fung, 1983). Clinch and Keselman however
found very 1little difference in statistical power
between the procedures for this condition. The
statistical power for all of the procedures studied
however was relatively low, and that may explain the
inconsistency in the results reported by Clinch and
weselman. Finally for heavy-tailed distributions the
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Welch procedure provided a slight power advantage
- (Clinch and Keselman, 1982; Lee and Fung, 1983).

Recently, Dauphin (1983) considered a different
approach to the Behrens-Fisher problem. She suggested
transforming the original data by using rarks before
group means are compared. After ranking the data from
highest to lowest across all comparison groups, the
parametric analysis of variance F-ratio is computed.
This strategy of transforming data usinz ranks before
computing parametric analyse's has been suggested by
Conover and Iman (1981) as a linking procedure between
parametric and nonparametric analysis strategies.
They have suggested that the ranking approach can be
used in a ' variety of research contexts and
considerable research has been conducted using this
approach generally with positive results. Nath and
Duran (198la, 1981b) studied the procedure when two
group means are to be compared, Conover and Iman
(1982) applied the approach to analysis of covariance,
Iman and Conover (1979) used the rank transformation
in a regression problem, and Iman (1974} studied the
approach for factorial designs when an interaction was
present. Although the theoretical rationale for the
procedure 1is not fully developed, progress in that
direction has been reported by Iman, Hora and Conover
(1984). ’

The use of the rank transformation has been
motivated primarily as an alternative analysis
strategy to parametric statistics when sampled
distributions were non-ncrmal. In this context the
rank transformation has often provided a more
sensitive test of the 1location parameter than the
parametric alternative. The rationale of applying the
rank transformation as a solution to the
Behrens-Fisher problem was based on previous findings
that nonparametric strategies, while affected by
variance inequality, are less sensitive than the
parametric alternatives (Wetherill, 1960). Glazer
(1963), for example, empirically demonstrated
Wetherill's asymptotic results showing that the
Wilcoxbn-Mann-Whitney probability of a Type I error
was lecs affected than Student's t-test for independ-
ent sample means when the population variances
differed. Since the rank transform is monotonically

64




Rank Transform ANOVA

related to the Wilcoxon test, Dauphin expected similar
conclusions. Her results confirmed her expectation
showing that the actual Type I error rate for the rank
transform did not deviate greatly from the nominal
significance level when the sampled population was
normal.

Since the rank transformation has gained
considerable interest and Dauphin's results indicate
that the approach may have some merit in some
situations, it was decided to examine this proposed
solution to the Behrens-Fisher problem a 1little
closer. Specifically the purpose of the study was to
analyze the empirical Type I error rates of the rank
transform ANOVA with parametric analysis of variance
and  Brown-Forsythe's  procedure when ponulaticn
variances differed, anrd the distributions were normal
or non-normal. In addition, for those situations
where appropriate Type I error rates were observed,
the statistical power estimates for small, medium and
large differences in group means were compared.

Computer Simulation

In order to calculate empirical Type I error rates
and statistical power eéstimates for each of the
competing analysis strategies under a variety of
conditions, four factors were manipulated: :1) sample
size; 2) distribution form; 3) population mean
difference and 4) population variance inequality.
Although all three of the procedures can be used for
comparing group means in wmultiple group designs,
including factorial designs, the present iavestigation
was limited to comparisons between two groups.

Sample Size.  Samples of (10,15), (15,10), (20,20),
(17,23), and (23,17) were included in the
investigation. The sample sizes considered here were
thought to be moderate and representative of those
often found in research studies in the social
sciences. Small departures from equal n's were chosen
to represent common attrition rates in social
research.

Distribution Form. A normal and four non-normal
parent distributions were considered. The non-normal
distributions included a light-tailed, platykurtic
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distribution, a symmetric, leptokurtic (heavy-tailed)
distribution, a moderately skewed distribution, and a
distribution which was both skewed and leptokurtic.
The population cnaracteristics of these distributions
are discussed in the data generatjon section.

Population Mean Difference. To study the Type I
error rates of the three procedures, data were
generated from populations which had a common mean.
Power estimates were obtained by comparing the
proportion of hypotheses rejected when data were
sampled from populations which differed by .2, .5, or
+8 pooled standard deviation units. These differences
in the 1location parameters have been suggested by
Cohen (1977) as representing small, medium, and large
effects respectively.

Population Variances. The present study considered
populations which had common variances as well as six
levels of variance inequality. Specifically data were
generated from populations with the following variance
pairs: (1,1), (1,1.5), (1,2.0), (1,2.5), (1,3.0),
(1,3.5), and (1,4.0). The choice of these variance
differences was based on two considerations. First, it
was believed that' the cnnditions considered reflected
common situations encountered by applied researchers.
Second, it was believed that with the unequal
sample size combinations studied, the variance
differences would affect the Type I error rate of the
parametric ANOVA F-ratio.

Data Generation. Data for the study were generated-
using the SAS computing package. Scores on the
dependent measure were created based on the linear
model function Yij =¥ . +a. +J j€ 44, where Yj5 is
the 1t® observation in the j*M group. I The grand mean
B .. was set equal to 10. The effect size parameter
for the jt group, a .5, was varied from 0, .2, 5, or
+8 pooled standard deviation units to study the effect
population mean difference. In all cases the shift
parameter was added to the second group so that

W) <u3. The random error comporent € i was
generated using the SAS NORMAL function to simulate
scores, Xj;, from a standard normal distribution. For
a normally distributed error component, £ ;i was set
equal to Xjq. For a non-normally distributed
component, Xij was transformed using a power function
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developed by Fleishman (1978): €15 =
[(dX1j+C)Xij+b]X1 +a. The constants a, b, ¢ and d
were chosen to transform the standard normal variable
to a variable with known skewness and kurtosis and
null mean and unit variance. Four non-normal
distributions wece considered in the study.
Descriptive statistics and frequency distributions at
half standard deviation intervals are included in
Table 1. Values reported in the table are based on
20,000 random variables generated for each
dist. _bution. The variance of the observations in
group one was kept constant at 1 for all conditions
studied while the variance of the second group was
increased from I to 4 in increments of .5 units by
multiplying the random error component by the desired
standard deviation.

Computed Test Statistics. In each sample generated,
the group means were compared using the parametric
analysis of wvariance F-ratio, the Brown~Forsythe
(1974a) test statistic, and the rank transform
analysis of variance F-ratio.

The parametric analysis of variance F-ratio is
computed as the ratio of the mean square between group
means to the pooled within group variance:

=T \2/(1un
).’.jnj(Y.j ¥..)c/(J-1)

F =

§ (nj —l)sg-/ (N-J)

where nj 1s the number of observations in the jth
group; N 1is the total number of observations in the
sample; J is the number of groups in_the study; Y.; is
the sample mean for the jth group; Y.. is the grand
mean; S5 1is the variance of the jt group. The
critical test gstatistic is obtained from the F
distribution with J-1 and N-J degrees of freedom.

The rank transform ANOVA F-ratio is computed using
the same .ormula as parametric ANOVA with the
dependent variable obtained by replacing the original
observations with the rank of the observation. The
observations are ranked by assigning a 1 to the lowest
observation and N to the highest observation in the

67
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Table 1

Frequency Distributions and Descriptive Statistics

ERIC
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Distributions
Skewed/

Interval Normal Platykurtic Skewed Leptokurtic  Leptokurtic

- =30 17 151

~-3.0,-2.5 85 119

-2.5,=2.0 232 301

-2.0,~1.5 889 1552 601

-1.5,-1.0 1885 2297 3605 1257

-1.0,-0.5 2470 2917 3976 2816 8555

-0.5, 0.0 3826 3235 3591 4745 4219
0.0, 0.5 3817 3177 2053 4753 2577
0.5, 1.0 3038 2805 2345 2748 1777
1.0, 1.5 1849 2411 1552 1343 1142
1.5, 2.0 855 1606 1039 586 671
2.0, 2.5 332 520 .263 440
2.5, 3.0 86 230 178 268 .
3.0, » 19 89 139 351
Mean -.0015 .0049 .0009 -0004 - .0063
Variance ,9836 1.0109 1.0631 1.0292 L9774
Skewness . 0004 - .0005 . 7266 - ,1297 1.6820
Kurtosis -,0938 -1.0131 - ,0846 3.5547 3.1517

[0
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total sample across all groups. If ties are present
the average rank is assigned to all tied observations.
The F-ratio is computed as:

;.»:nj (R.j-—R..) /3-1

z(nj--l)s2 /N-J
k| j
where R.; is the mean rank of group j; R.. is the
grand mean rank N+1/2 ; Szgj is the variance on the
ranks for the jt th group. The critical test statistic
for the rank transform F-ratio is the same as that for
the parametric ANOVA.

The Brown-Forsythe statistic is obtained as the
ratio of the sum of squares bestween groups and a
weighted sum of within group variance:

In, (¥.3-Y..)2
33

BF

n
£(1- ﬁi)s2
i h|

where the terms are defined as stated above. The
Brown-Forsythe F statistic has an F distribution with

degrees of freedom J-1 and f where 1/f 1is equal to

n J n
2 =(1- 2 - 2
[cj/(nj—l)] and e =(1 ﬁi)sj/ [z ﬁi)sj ]

For each condition, 1000 replications of the three
gtatistics were computed, and the frequency at which
each procedure rejected the null hypothesis of equal
population means at the .05 level was recorded. In
evaluating the robustness of each procedure, it was
decided that observed proportions of Type I errors two
standard errors above or below the nominal
significance level would be judged as unacceptable.
Based on 1000 replications, observed Type I error
rates outside the interval (.036, .064) were
considered nonrobust.

FRiC 11 :

wll Toxt Provided by ERIC




Olejnik and Algina
Results

The results of the study are reported in two
sections. In the first section the empirical Type I
error rates for the Brown-Forsythe, the parametric
ANOVA, and the rank traneform ANOVA are presented for
increasing variance inequality with equal and unequal
sample size combinations. The second sectior presents
the proportions of hypotheses rejected when population
differed by .2, «5, or .8 pooled standard deviation
units representing small, medium, and large effect
sizes. The power results are reported only for those
conditicns where appropriate Type I error rates were
obtained.

Type I Error Rates

As a preliminary test of the computer program and
the data generation procedure, data for three sample
size combinations were generated from populations
identical in their form, scale, and location. The
sample means for these samples were compared using the
three analysis procedures under consideration, and the
Proportion of hypotheses rejected at a nominal
significance level of .05 were recorded. Table 2
reports the results of these analyses for the five
distribution forms studied. None of the '~ observed
proportions exceeded two standard errors above or
below the expected five percent level. These results
therefore support the adequacy of the data generation
and analysis procedures used in the study.

The cbserved Type I error rates, as the difference
in group variances increased, are reported in Table 3
for the five distribution forms with equal and unequal
sample size combinations. For the normal distribution
the results reported here are consistent with those
presented by Dauphin (1983). The Type I error rate
for the rank transform ANGVA was affected to a lesser
degree than the parametric ANOVA F-ratio. However, for
situations where the smaller samples had greater
variance, the proportion of Type I errors were more
than two standard errors above the nominal
significance 1level and therefore judged as being
unacceptably high. When large samples had greater

0 12




Rank Transform ANOVA
Table 2
Type I Errov Rates for the Brown-Forsythe (BF),
Parametric ANOVA (F), and the Rank Transform (RF)
ANOVA
Sample Size

15/10 20/20 23/17
Distribution BF F RF BF F RF BF F 133
Norral 064,046 ,05C J064 044,043 060 .064  .059
Plazykureic .057 .058 .058 056 .056 .052 .054 ,051 .08
Skewed 050  .043  .050 .052  .052 ,055 055 .057 .054

Leprokurtic .048 ,051 .056 061 042,046 .058 .056 .061
Skewed and 045 045 053 046 .048  ,052 -064 L0640 ,045
Leptokurtic

Note: Nominsla= ,05.
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Table 13
Tyre 1 Evror Retes for the Brasn-Forsythe (BF), Parametric ANOVA (F)}, and the

Rank Transform ‘ {OVA (RF)

Variance

Sample Sjize (n]/nz)

10/15 15/10 20/20 17/23 23/11

Ratio I -
Ofstribution 02302 BF F RF BF F RF 8F F RF BF F RF BF F RF

A

Normal 1:1.5 .0659 .049 .052 .050 .069 .066 048 045 .42 047 .038 .0%0 046 .051 .052
1:2.0 .05 .041 .055 055 .069 .06€ .05 .057 .066 057 044,042 037,045 .046
1:2.5 .056 .040 .04) .048 .067 .G68  .049 .049 .056 046 .G36 .047 053  ,068 .069
1:3.0 .055 .034 .045 .G53 .089 .079 050 .052 .061 044,037 .045 042 .060 .056
1:3.5 .049 .028 .037 .055 .085 .075 L0486 046 049 051 .034% .040 .06 .078 .074
4 1:4.0  .044 070 .04% .043 .084 .081 .067- .071 .080 047,034 047 043 .068 .ro7
Platykurtic 1:1.5  .043 .040 .047 .050 .063 .068 063,043 .04 044 041 .048 .048  ,056 .05%
1:2.0 .040 .0628 .03 050 .061 .066 .048 .048 .054 045 .040 .044 .048 .056 .060
1:2.5 .039 .024 .0% 060 .079 .078 .053 .055 .0ns8 .053 .039 .047 .058 .073 .067
1:3.0 .058 .040 .059 .052 .076 .075 .059 .059 .062 .055 .038 .046 045 .066 .072
1:3.5  .045 .027 .040 .052 .077 .078 .049 .051 .06l .056 .041 .058 .049 081 .074
1:4.0  .055 .035 .045 .059 .087 .094 .052 .053 .063 .050 .033 .051 .G53 .078 .077
Skewed 1:1.5 .038 .039 .052 .060 .059 .069 .057 .057 .057 048 045 .055 053,060 .07)
1:2.0  .057 .045 .054 054 .078 .090 .041 041 .056 .055 .043 .060 .051 .057 .075
1:2.5 .05 .049 .07} 065 .9719 .089 046 047 .073 057 .047 .072 .053 .072 .093
1:3.0 .051 .035 .052 .057 ,089 .088 .048 .049 .080 .047 .036 .065 .053 .070 .08}
1:3.5  .049 .05 .064 L0648 075 .098  .049 .050 .079 063 .047 .086 041,068 097
[: in:r 1:4.0 045 .027 .05} .054 .o088 .109 .053 .056 .079 057 .040 .081 059 077 .110

14
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feptokure fe 1:1.5
1:2.0

§:2.5

1:3.0

1:3.5

1:4.0

Skewed and 1:1.5
Leptokurtic  1:2.0

1:2.5

1:3.0

1:3.5

1:4.0

.039

045
045
.056

.040

.049

.939
.049

.018
.050
.041
.038
.037
.048

.067
.095
.16
.118
110
. 149

049
.036
.09
.041
.051
.041

.068
.056
067
071
.077
.076

.068
.053
.070
.073
.088
.080

.070
.062
.077
.035
.09

100

.061
045
.063
.052
077
.023

.103
.120
147
.150
.170
175

.052
043
.051
.050
.045
.037

.058
.043
.G68
.060
.058
.059

.052
045
.053
.051
.047
.039

.059
047
068
060
.061
062

.049
.0%3
048
.057
.048
.042

.108
.19
.160
.190
.192
.229

.053
.047
064
.049
044
.064

.053
.056
.039
042
.045
.066

047
.035
047
.040
.029
.039

.047
.052
.036
.035
.038
047

.054
.050
053
.054
.051
.055

.089
145
.137
.155
.203
.192

.045
.053
849
.050
.061
.051

.046
.055
.068
.021
.017
.068

.0657
.067
.065
.072
.086
.082

.055
.061
.073
.079
.095
.089

.049
.062
.053
.069
.071
.07¢9

.097
.149
.182
.188
.209
.221

Hote: Nombngd a = 05
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Olejnik and Algina

variance the rank transform had acceptable Type I
error rates while the ANOVA F-ratio underestimated the
nominal significance level. With equal sample sizes,
both the ANOVA F and the rank transform were not
seriously affected by variance inequality. The
Brown-Forsythe procedure provided appropriate Type 1
error rates for all degrees of variance inequality and
sample size combinations.

With  symmetric, non-normal distributions the
observed Type I error rates were similar to those
obtained under the normal populations. The rank
transform ANOVA had Type I error rates which were
affected to a lesser degree than the parametric ANOVA
F-ratio. Error rates within the acceptabie range were
obtained for the rank transform approach when sample
sizes were equal and when the larger sample size had
greater variance. When the sample with fewer
observations had greater variance, the observed Type I
error rate exceeded the nominal significance level by
more than two standard errors. When samples were
selected from skewed topulations, the rank transform
approach had observaed Type I error rates
overestimating the norinal significance level for all
sample size combinations except when samples of
(10,15) were selected. Under the latter condition,
appropriate Type I error rates were obtained. The
Type I error rates for the ANOVA F-ratio were as
expected and were similar to those obtained under
normal distributions. With the skewed and leptokurtic
distribution, the rank transform became quite liberal,
even for the condition with sample s’zes of (10,15).
Again Type I error rates for the parametric F were
similar to those obtained with the normal
distribution. The Brown-Forsythe procedure
overestimated the nominal significance level when the
samples distribution was both skewed and leptokurtic
and the larger variance was matched with the samples
having fewer observations. When larger samples were
matched with lower variance, appropriate Type I error
rates were obtained. These results were consistent
with those reported by Clinch and Keselman (1982) in
their analysis of Welch's procedure.

In summarizing these results, the observed Type I
error rates for the rank transform was affected to a

74
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lesser degree than the paramecric ANOVA F-ratio when
the samples distributions were symmetric. This
conclusion is comsistent with that predicted by
Wecrherill (1960) and previously demonstrated for the
—ormal distribution by Dauphin (1983). With sl.ewed
distributions however, the observed Type I error rate
overestimated the nominal significance 1level. The
effect of variance inequality on the statistical power
of the rank transform ANOVA when the sam)led
distribution was symmetric is presented in the next
section.

Statistical Power

The proportion of hypotheses rejected when the
populations differed by a small, medium, or large
effect size (.2, .5, or.8 pooled standard deviation
units respectively) are reported in Tables 4 and 5 for
the symmetric distributions studied when samples we:e
(20,20) and (17,23) respectively. With equal sample
sizes the Brown-Forsythe and parametric ANOVA provided
comparable power estimates for all three symmetric
distributions. When sample sizes were unequal the
Brown—Forsythe procedure provided a more sensitive
test for the difference 1in population means for all
three distributions. These results were expected
since “under the conditions studied with unequal sample
sizes, the F-ratio leads to a conservative test.

Differences between power estimates for the rank
transform ANOVA and those provided by the
Brown—Forsythe and the parametric ANOVA procedures
were similar when sample sizes were equal or unequal.
For the normal and platykurtic distributions, the rank
transform ANOVA provided power estimates slightly
lower than those of the other two procedures. When
the sampled distribution was leptokurtic, however, the
rank transform procedure provided a more sensitive
test for the difference in population means than
either the Brown-Forsythe or the parametric ANOVA.

Conclusions

The results of the study indicate that the rank
transformation approach to analysis of variance can
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Table 4

Proportion of Hypotheses Rejected for the

Brown-Forsythe (BF), Parametric ANOVA (F) and the Rank
Transform ANOVA (RF)

Distribution
Variance
Ratio Rorzal Placykurtic Leptolurcic
Zffece 2
Size °1 HJ BF F RF 87 F RF Bf F RF
Szall 1:1.0 -C98  .098 .09 .100 .101 .089 .100 .160 .1.5
' 1:1.5 .096  .099 .103 .095 .096 .089 .065 .067 .09l
1:2.0 .095 .099 .09¢ .08% .086 .078 .099 .100 .106
1:2.5 -087 .992 .089 .109 .110 .097 .09  .097 .096
1:3.0 .101  ,102 .109 .096 .039 .088 .107 .110 .13%
1:3.5 091 .092 .099 .102 .18& .09S .095 .097  .i18
‘1:4.0 .086 .08 .090 .097 .101 .08& .110 .115%  .109
kediun 1:1.0 L3770 378 .362 L3046 L3040 265 .376 378 .417
1:1.5 £361 L3642 .319 .328 .329  .287  .348  .351 .38B
1:2.0 2335 L3440 L3260 L324 325 .275 3% L3664 L4l0
1:2.5 .335  .338  .330 .326 .330  .269  .336 .339 .4.08
1:3.0 £357 363 351 .345 .348 .281  L.336 (364 .605
1:3.5 W318 L3260 .312 .298  .302  .236 .370  .373  .443
1:4.0 2366 369 L3493 2368 273,343,352 L6il
Large 1:1.0 .718  .718 .678 .699 .700 .640 .697 .701  .766
1:1.5 .696 .697 662 .705 .707 .623 .725 .728  .806
1:2.0 -678  ,682 .644  .689  ,69%  .611 .79 ,724 .7%8
1:2.8 .696 .702 .656 .668  .676  .554  .496 ,703 .776
1:3.0 .682  .690 .637 .671 .678  .567  .697 .703 .786
1:3.5 .68)  .68% .661 .655 .663 ,.537 .706 ,721 600
1:4.0 .666 673 641  .689  .694  .553  .€89 .97 .779
Note: n =n, - 20
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Table 5

Proportion of Hypotheses Rejected for the

Brown-Forsythe (BF), Parametric ANOVA F, and the Rank
Transform ANOVA (RF)

Rank Transform ANOVA

Distriducion
Variance
Ratio Nor=al Platvkurtac Leptokurzic
Effect 2 2

Size €%, BF F RF BF F RY BF F R¥
Small 1:1.0 .097 .095 .0%0 ,082 .082 .08z .078 .078 .54
1:1.5 .115  .108 .1l10 .087 .078 .077 .080 .072 .097
1:2.0 .106 .089 ,083 .093 .076 .08 .098 .082 ,120
1:2.5 .095 .070 .08 .080 .064 .07l ,100 .077 .117
1:3.0 .C89 .067 ,083 .102 .085 .09 .125 .099 L1463
1:3.5 .102  .074 .088 .104 .079 .089 .1i% .01 .112
1:4.0 .10  .085 ,091 .101 .073 .075 .112 .068  ,113
Yodivm 1:1.0 L350 .342  .327  .304 .310 .28 .369 .372 .420
1:1.5 .331 316 L3064 .36 .329  .296  .382 .367 .429
1:2.0 .38 .35 .339 .3%8 .314 .278 .365 .267 417
1:2.5 .365  .321 L3260 .365 .327  .284  .389 . 344 2437
1:3.0 377 326 368 L350 .299 .252  .38% .337 448
1:3.5 .383  .326 .39 .356 .301 .270 .390 .345 L448
1:4.0 .366  .295 .209 ° .371 L2946 .260 L41d .346 4438
Large 1:1.0 .066  .672  .625 ,693 ,698 .637 .671 674 .762
1:1.5 .707  .680 .662 .691 ,669 .617 ,731 .718 .792
1:2.0 2762 ,700  .699 .71l .683 .520 .753 .712 .8C5
1:2.5 .738  .688  .6B7  .742 .698 .60 .753 .715 .828
1:3.0 W54 ,679  .689  .737  .685 .610 .772 7 .819
1:3.5 L7643 .688  .675  .736 .679 .598 .740 .700  .790
1:4.0 L772 .708  .712 741,688 .59 761 .709 .834

Note: o, = 17, a, = 23

ERIC

Aruitoxt provided by Eic:

Y
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provide a solution to the Behrens-Fisher problem, but
this solution is appropriate enly for a limited set of
conditions. In particular the rank transform ANOVA
may be recommended when sample frequencies are
positively related to group variances and the form of
the population distribution is leptokurtic. Under
that condition the actual Type I error rate does not
overestimate the nominal significance level and the
Tank transform provides a slight power advantage over
the Brown-Forsythe solution. This result was
interesting in that the power advantage for the rank
transform procedure was obtained even though the
actual Type I error rate underestimated slightly the
nominal significance level. These results indicate
that Type I error rate alone should not be used to
evaluate or compare statistical analysis strategies.
On the other hand, consideration of both statistical
power and actual Type I error rates do provide minimum
criteria in Judging the usefulness of analysis
alternatives,

For other symmetric distributions the rank transform
procedure did not provide any statistical advantage
compared to the Brown-Forsythe procedure. With skewed
population distributions, however, the rank transform
approach overestimated the nominal significance level
even when .the sample frequencies were equal. This
finding may be viewed as an important limitation of
the rank transform strategy.

As a general solution to the group variance
inequality problem, the results of this study do not
provide sufficient evidence to recommend any single
analysis approach. Before computing hypothesis tests,
researchers should first obtain descriptive summary
statistics to determine the sample distribution
characteristics and to use this information to guide
their choice of analysis procedures. For most
situations where the population variances differ, the
Brown-Forsythe procedure can be used to compare means.
This procedure has been shown in the present study, as
well as previous ihvestigations, to be generally
robust to  variance inequality and to provide
statistical power comparable to or greater than
parametric analysis of variance. There is some
evidence however which indicates that when the sampled
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distributions are both skewed and leptokurtic, the
Brown—-Forsythe procedure can overestimate the nominal
significance level if sample frequencies and group

variances are negatively related.
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